

Tetrahedron Letters 40 (1999) 7815-7818

Stereoselective synthesis of (E)- β -fluoro- α , β -unsaturated esters by carbonylation of (E)-2-fluoro-1-iodo-1-alkenyliodonium salts

Shoji Hara,* Kenichi Yamamoto, Masanori Yoshida, Tsuyoshi Fukuhara, and Norihiko Yoneda

Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Received 14 July 1999; revised 16 August 1999; accepted 20 August 1999

Abstract

(E)- β -Fluoro- α , β -unsaturated esters were stereoselectively obtained by the palladium-catalyzed carbonylation reaction of (E)-2-fluoro-1-iodo-1-alkenyliodonium salts obtained by the addition of iodotoluene difluoride to 1-alkynes. © 1999 Elsevier Science Ltd. All rights reserved.

Key words: Carbonylation, fluorine and compounds, hypervalent elements

(E)-α-Fluoro-α,β-unsaturated esters have been used as building blocks or key intermediates for the synthesis of the fluorinated analogs of natural compounds because they can be stereoselectively prepared by the Horner-Wadsworth-Emmons reaction using ethyl 2-fluorodiethylphosphonoacetate. Though some other stereoselective methods for the fluorinated unsaturated carbonyl compounds have been reported, a fluorine atom was always introduced into the α-position of the carbonyl group and the stereoselective synthesis of β-fluoro-α,β-unsaturated esters has not been reported. In order to synthesize various kinds of analogs having a fluorine atom on their double bond, a new method for the stereoselective synthesis of β-fluoro-α,β-unsaturated esters has been required. Recently, we found that iodotoluene difluoride (1) adds to 1-alkynes to give (E)-2-fluoro-1-alkenyl-1-iodonium salts (2) stereoselectively. We wish to report here that (E)-β-fluoro-α,β-unsaturated esters (3) can be prepared by the palladium-catalyzed carbonylation of 2 (eq. 1).

^{*}Corresponding author. Tel:+0081 11 706 6556; fax:+0081 11 706 6556; e-mail: Hara@org-mc.eng.hokudai.ac.jp

The methoxycarbonylation reaction of alkenyliodonium salt 2 obtained from 1-dodecyne was examined under various reaction conditions (Table 1). Recently, the alkoxycarbonylation of 1,2-difluoro-1-iodoalkenes was reported to proceed under the conditions of high temperature and high CO pressure.⁶ The methoxycarbonylation of 2-fluoro-1-dodecenyliodonium salt 2 proceeded at room temperature and under 1 atm of CO to provide methyl (E)-3-fluoro-2-tridecenoate stereoselectively (> 95 %)⁷ with methyl 4-methylbenzoate (4) as a minor product.⁸ The application of higher temperature (Entries 6 and 9) or higher CO pressures (Entry 5) was less effective. When the reaction was carried out in MeOH at room temperature under 1 atm of CO for 20 h using 0.1 mol% of PdCl₂ and 1 eq. of Et₃N to 1-dodecyne, the best result was obtained (Entry 7).

Table 1 Synthesis of Methyl (E)-3-Fluoro-2-tridecenoate^a

C ₁₀ H ₂₁ C = CH	1, Et ₃ N-5HF CH ₂ Cl ₂	Pd cat. R ₃ N CO, MeOH	C ₁₀ H ₂₁ COOMe +	p-TolCOOMe
Entry	Catalyst, (mol%)	R ₃ N	React. temp.	Yield,% ^b
1	Pd(OAc) ₂ , (1)	Et ₃ N (1)	room temp.	54 (4)
2	Pd(OAc) ₂ , (5)	Et ₃ N (1)	room temp.	46 (4)
3	$Pd(OAc)_2$, (5)	Et ₃ N (3)	room temp.	28 (33)
4	Pd(OAc) ₂ , (5)	Bu ₃ N (1)	room temp.	44 (6)
5	$Pd(OAc)_2$, (5)	Et ₃ N (1)	room temp.	47(trace) ^c
6	$Pd(OAc)_2$, (5)	Et ₃ N (1)	50°C	45(5)
7	$PdCl_2$, (1)	Et ₃ N (1)	room temp.	5 8(3)
8	PdCl ₂ , (6)	Et₃N (1)	room temp.	50(12)
9	PdCl ₂ , (6)	Et ₃ N (1)	50°C	54(13)

^a If otherwise not mentioned, the reaction was carried out under 1 atm of CO in 10 ml of MeOH for 20 h.

Various kinds of 1-alkynes were used for the (E)- β -fluoro- α , β -unsaturated esters synthesis under the same reaction conditions (Table 2). The yields are not high because the alkenyliodonium salts 2, prepared from 1-alkynes and 1, were used for the methoxycarbonylation step without purification, and the overall yields of the two steps based on the 1-alkynes are shown. The alkynes having functional groups such as chloride (Entry 2),

^b Isolated yield based on 1-dodecyne, in parenthesis, the yield of methyl 4-methylbenzoate. ^c The reaction was carried out under 10 atm of CO.

ketone (Entry 4), and ester (Entry 3) can be converted to the corresponding fluorinated unsaturated esters 3 without the protection of the functional groups. The isomeric purity of the products 3 was high (>95%) and only a small amount of methyl 4-methylbenzoate was formed (<3%).

Table 2	Synthesis of	f (E)-β-Fluoro-α	8-unsaturated	Esters ^a
	CYLLUICSIS	1 (21-11-11-11-11-11-11-11-11-11-11-11-11-1	.p-ui isatui atcu	_3.5.3

Table 2 Cynthesis of (L)-p-1 toolo (L)-p-1 toolo (L)						
Entry	Alkyne	Product	Yield, % ^b			
1	C ₁₀ H ₂₁ C=CH	C ₁₀ H ₂₁ COOMe	58			
2	CI-(CH ₂) ₉ C ≖ CH	CI-(CH ₂) ₉ COOMe	66			
3	MeOOC-(CH ₂) ₈ C≡CH	MeOOC-(CH ₂) ₈ COOMe	60			
4	t-Bu (CH ₂) ₈ C=CH	CCH ₂) ₈ COOMe	51			
5	CH ₂ C=CH	СООМе	57			
6	Ph-C ≖ CH	PhCOOMe	57			

^a The reaction was carried out as shown in a text. ^b Isolation yields based on alkyne used.

A typical procedure is as follows. To a CH_2Cl_2 (3 ml) solution of 1-dodecyne (196 mg, 1 mmol) in a reaction vessel made of TeflonTM PFA, was added at 0 °C 1 (1.5 mmol) in Et_3N -5HF (11 ml). After stirring for 2 h at 0 °C, the reaction was quenched by the addition of water (10 ml). The mixture was extracted with CH_2Cl_2 , dried over MgSO₄, and concentrated under reduced pressure to give crude (*E*)-2-fluoro-1-dodecenyliodonium salt, which was used for the next step without purification. In a glass vessel fitted with a balloon (3 l), PdCl₂ (2 mg, 0.01 mmol) was placed and after replacing the atmosphere of the vessel with CO, the balloon was filled with CO. The crude iodonium salt 2 and Et_3N (101 mg, 1 mmol) in MeOH (10 ml) were then introduced into the reaction vessel. The reaction mixture was stirred at room temperature for 16 h and then poured into water. The product was extracted with ether and the combined organic phases were dried over MgSO₄. After concentration under reduced pressure, purification of the product by column chromatography (silica gel/hexane-ether) gave methyl (*E*)-3-fluoro-2-tridecenoate in 58% yield with a trace amount of methyl 4-methylbenzoate as a by-product. IR (neat): 1729, 1674 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.56 (d, J = 19.5 Hz, 1H), 3.71 (s, 3H), 2.80 (dt, J = 7.6, 25.6 Hz, 2H), 1.62-1.26 (m, 16H), 0.86 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (84.67)

MHz, CDCl₃/CCl₃F) δ -75.43 - -76.26 (m, 1F); HRMS calcd for C₁₄H₂₅O₂F 244.1839, Found 244.1841.

Acknowledgements

This work was financially supported by the Asahi Glass Foundation.

References

- Welch, J. T.; Eswarakrishnan, S. Fluorine in Bioorganic Chemistry. John Wiley: New York, 1991; Welch, J. T. Tetrahedron, 1987, 43, 3123-3197.
- Liu, R. S. H.; Matsumoto, H.; Asato, A. E.; Denny, M.; Shichida, Y.; Yoshizawa, T.; Dahlquist, F. W. J. Am. Chem. Soc., 1981, 103, 7195-7201; Asato, A. E.; Kini, A.; Denny, M.; Liu, R. S. H. J. Am. Chem. Soc., 1983, 105, 2923-2924; Camps, F.; Coll, J.; Fabrias, G.; Guerrero, A. Tetrahedron, 1984, 40, 2871-2878; Patrick, T. B.; Lanahan, M. V.; Yang, C.; Walker, J. K.; Hutchinson, C. L.; Neal, B. E. J. Org. Chem., 1994, 59, 1210-1212; Shinada, T.; Sekiya, N.; Bojkova, N.; Yoshihara, K. Synlett., 1995, 1247-1248; Patrick, T. B.; Neal, B. E.; Synlett, 1996, 1227-1228; Kim, B. T.; Min, Y. K.; Asami, T.; Park, N. K.; Kwon, O. Y.; Cho, K. Y.; Yoshida, S. Tetrahedron Lett., 1997, 38, 1797-1800; Francesch, A.; Alvarez, R.; López, S.; de Lera, A. R. J. Org. Chem., 1997, 62, 310-319; Kvicala, J.; Plocar, J.; Vlasáková, R.; Paleta, O.; Pelter, A. Synlett, 1997, 986-988; Robustell, B. J.; Abe, I.; Prestwich, G. D. Tetrahedron Lett., 1998, 39, 9385-9388; Percy, E.; Singh, M.; Takahashi, T.; Takeuchi, Y.; Kirk, K. L. J. Fluorine Chem., 1998, 91, 5-7.
- Bessiére, Y.; Savary, D. N.-H.; Schlosser, M. Helvetica Chim. Acta., 1977, 60, 1739-1746;
 Ishihara, T.; Kuroboshi, M. Chem. Lett., 1987, 1145-1148;
 Matsuo, N.; Kende, A. S. J. Org. Chem., 1988, 53, 2304-2308;
 Clemenceau, D.; Cousseau, J. Tetrahedron Lett., 1993, 34, 6903-6906;
 Kawasaki, T.; Ichige, T.; Kitazume, T. J. Org. Chem., 1998, 63, 7525-7528.
- 4. Normant et al previously reported that (E)-β-fluoro-α,β-unsaturated esters can be prepared from 1,1-difluoroethylene with the selectivity of 87-90%. However, the introduce of the functional groups into the molecular is difficult by their method, see: Gillet, J. P.; Sauvétre, R.; Normant, J.F. Synthesis, 1982, 297-301.
- Hara, S.; Yoshida, M.; Fukuhara, T.; Yoneda, N. J. Chem. Soc., Chem. Commun., 1998, 965-966.
- 6. Wesolowski, C. A.; Burton, D. J. Tetrahedron Lett., 1999, 40, 2243-2246.
- As for the alkoxycarbonylation reaction of the iodonium salts, see: Uchiyama, M.; Suzuki, T.; Yamazaki, Y., Nippon Kagakukaishi, 1982, 236-241; Ochiai, M.; Sumi, K.; Takaoka, Y.; Kunishima, M.; Nagao, Y.; Shiro, M.; Fujita, E. Tetrahedron, 1988, 44, 4095-4112; Kitamura, T.; Mihara, I.; Taniguchi, H.; Stang, P. J. J. Chem. Soc., Chem. Commun., 1990, 614-615.
- As 4-iodotoluene was not converted to 4 under the reaction conditions, 4 was directly formed from 2.
- From 4-iodotoluene (327 mg, 1.5 mmol) and Et₃N-5HF (11 ml), 1 was prepared by the previously reported electrochemical method⁵ and used as a Et₃N-5HF solution without purification.